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Abstract
Using a general Green function formulation, we re-derive, both (i) Spitzer and
his followers results for the winding angle distribution of the planar Brownian
motion, and (ii) Edwards–Prager–Frisch results on the statistical mechanics
of a ring polymer entangled with a straight bar. In the statistical mechanics
part, we consider both cases of quenched and annealed topology. Among new
results, we compute exactly the (expectation value of) the surface area of the
locus of points such that each of them has linking number n with a given closed
random walk trajectory (ring polymer). We also consider the generalizations
of the problem for the finite diameter (disc-like) obstacle and winding within a
cavity.

PACS numbers: 61.41.+e, 36.20.Ey, 87.15.Cc

1. Introduction

In 1958, Spitzer [1] established the following result. Consider the two-dimensional random
walk starting at a point other than O, and let θ(t) be the total continuous angle wound by the
walker around O up to time t (see figure 1(a)). The Spitzer law says that the quantity θ(t)/ln t

at large enough t is Lorenz (or Cauchy) distributed:

W(θ) = 1

π

1

1 + x2
x = 2θ(t)

ln t
. (1)

With a remarkable delay of about 25 years, a large group of followers studied this law in
depth [2–14]. The central finding of these studies attributes the divergent moments of the
Spitzer distribution (1), e.g. 〈θ2〉, to the small scale properties of the regular random walk
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Figure 1. Schematic representattion of the model. (a) Random walk winding around an obstacle
O. This obstacle might be just a point, or it might be a disc of a finite radius b. (b) Closed
polymer winding around an obstacle. Mathematically, this is similar to (a), except both ends are
kept together. (c) Similar to (a), except the trajectory cannot leave a ‘cavity’ of some radius B.

trajectories. Simply speaking, infinitely large winding is accumulated while the trajectory
is wandering infinitely close to the obstacle O. Accordingly, this pathology of divergent
moments is removed by incorporating any kind of ‘granularity’, or short length scale cut-off,
in the model. Such modification of the model can be achieved in quite a few ways. One way is
to consider the random walk on the lattice instead of the continuous space [9]; another way is
to look at the winding around a finite obstacle, say, a disc of some radius b [2, 4, 5]; one more
possibility is to examine a broken line of straight segments of finite length b each instead of
standard Wiener-measured random walk; yet another way is to consider a worm-like smooth
curve with an effective segment b (that is, the curve which adopts smoothly curved shapes
r(s) with the weight proportional to exp[−(b/2)

∫
r̈2 ds], where s is the arc length). In all of

these cases, winding is characterized by the non-pathological distribution

W(θ) = π

4 cosh2(πx/2)
x = 2θ(t)

ln t
. (2)

A similar distribution is also characteristic for the winding of the self-avoiding walk [3, 6, 7];
self-avoidance, in this case, is just another way to suppress infinite winding at infinitely small
length scale. Mathematically, it turns out that the winding angle distribution is in fact an
example of a broad class of limiting laws for the two-dimensional random walk [4, 8].
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Many studies of winding angle distribution [2, 3, 5–7, 10, 12, 13] claim that entanglement
of long polymer filaments is (one of) their motivation(s). Indeed, the relation to polymer
physics does exist. It was found in 1967, almost a decade after Spitzer [1], by Edwards
[15] and, independently, by Prager and Frisch [16] (see also an influential review [17]).
These authors came up with the model of a polymer chain wound around a straight bar and
topologically entangled with this bar. Given the analogy of a polymer chain conformation
with the random walk trajectory, the Edwards–Prager–Frisch model is essentially the same
as that examined by Spitzer [1]. Neither of the works [15–17] makes a reference to [1].
Most likely, mathematical work [1] was not known to physicists at the time, but even apart
from that, authors of the works [15–17] did not examine winding angle distribution for the
random walk with open ends, their goal was obviously to compute quantities similar to those
of physical interest for real polymers. Unfortunately, no explicit formula was obtained in the
works [15–17] comparable in simplicity to equation (1).

To our surprise, we found that this fairly old area lacks both unity and clarity. The studies
of winding angle distribution [2–10] contain no hint on the lessons of this exactly solvable
model to polymer physics. Drossel and Kardar [11] as well as Samokhin [12, 13] brought the
subject to a new level of complexity, they examined winding angle distribution for the random
walks in a disordered medium. Drossel and Kardar [11] also provided simple derivation of
the results (1), (2) and applied it to many physical situations involving directed polymers,
but all that yields little insight into the topological properties of ring polymers. And we are
unaware of any followers of [15–17] who took advantage of the more recent mathematical
achievements [2, 4–6, 8–10]. Meanwhile, an exactly solvable model in general is useful if
only it yields some insight(s). Upon a closer look and re-examination of the literature, we
found that the model of winding can be made to meet these criteria, but it has not been done
yet. Our plan in this paper is to re-consider the problem from a single common view point,
including both winding angle distribution and some more physical aspects.

Our additional motivation arises from the fact that the study of topological constraints
in polymers in the years and decades after the works [15–17] had been dominated by the
phenomenological approaches based on the reptation theory [18, 19]. At the same time,
a breakthrough in microscopic understanding of this subject has not been achieved, and,
therefore, the need for exactly solvable models remains high. Moreover, apart from networks,
there is now another large ‘consumer’ for polymer topology, this is DNA physics. The DNA
double helix is frequently found in a closed loop form, it forms knots of various kinds [20,
21], and there are special enzymes spending energy to simplify the entanglements [22].

One of the key aspects of polymer topology is that there are two types of questions one
can ask, corresponding to annealed and quenched topological disorder, respectively [23]. The
beauty of the winding model, which so far seems to remain underappreciated, is that it allows
both types of questions:

• The typical annealed topology question is that about ring closure experiment and knot
probabilities [26–30]: having a linear polymer with ‘sticky’ ends, what is the probability
of obtaining a certain type of a knot upon first meeting of the two ends [20, 21]? A similar
question for the winding model is this: what is the probability that a random walk on the
plane links number n (or winding angle 2πn) with an obstacle?

• The typical quenched topology question is about, e.g., the size or other properties of a
polymer having a given fixed topology (e.g., knot type) [24, 25]; this is necessary, e.g.,
to understand the diffusion of knotted DNA in solution or in a gel. A similar question
for the winding model is this: given a polymer with fixed linking number n, what is the
(root-mean-squared) average distance of an arbitrary point on the trajectory from O?
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To conclude the introduction, we should also mention that the shortcomings of the
Edwards–Prager–Frisch model are well understood [32]. Basically, this model assumes that
entanglements algebraically commute with each other, while the real physical situation is
non-Abelian.

This paper is organized as follows. In section 3, we discuss the Green function formulation
of the problem and derive basic equations for all models—winding around the point, around
the disc, or inside the cavity. In section 4, we show how to re-derive and generalize the results
(1) and (2). In section 5, we consider the closed loop polymer, which is the random walk with
connected ends. In section 6, we make a few final comments.

Our work is heavy on calculations, even though some of the less important ones are
relegated into appendices. As readers, we do not like such heavy papers. This is why we start
from section 2 which provides an overview of major steps and the results for those readers not
interested in details.

2. Bird’s eye view of the results: for the lazy reader who does not want to dwell on the
calculations

If you, our reader, do not want to follow our calculations, this section offers a tour of the
results for you.

To begin with, section 3 contains no results: it describes the standard diffusion equation
and bilinear expansion of its Green function over the appropriate set of Bessel functions.
Here, for a ‘tourist’, all that is necessary to know is the notation a2/4 adopted for the diffusion
coefficient, which means that the root-mean-square distance travelled by a walker during the
time t is equal to a

√
t .

Formula (14) in section 4.1 is our first small result, it is a very mild generalization of
the Spitzer formula (1) which takes explicit account of the distances r and r ′ of a polymer
(or random walk trajectory) ends from the origin (or obstacle) O. Formula (14) gives the
probability distribution of winding angle θ for the random walk of length t with r and r ′ fixed.
Like the Spitzer law, it has diverging moments, such as 〈θ2〉.

The very cumbersome formula (23) gives a similar result for the winding around a disc
of a finite radius b. It generalizes formula (2) by keeping explicit track of positions r and r ′ of
both ends. Just like (2), it decays exponentially and yields finite values for all moments, e.g.,
〈θ2〉. One utility of this result is the analysis of cross-over between winding around a point
with infinite 〈θ2〉 and winding around a disc with finite 〈θ2〉. As we show in section 4.3, when
the disc size b goes to zero, there opens a wide range of times t (see equation (26)) where the
probability behaves as ∼1/θ2 up to θ about ln(a/b), and only at larger θ exponential decay
takes over; therefore, when we say that 〈θ2〉 diverges, this really means 〈θ2〉 ∼ (ln(a/b))2 at
small b.

In section 5 we go closer to the polymer view on the subject. For this, we consider that the
two ends of the random walk are glued together, so that r = r ′ and θ = 2πn, where (positive
or negative) integer n is the linking number, the number of turns the polymer ring makes
around the obstacle. Figure 2 depicts the statistical weight of the polymer conformations
with the linking number n as a function of r2/t . Qualitatively, this exhibits a behaviour
similar to that of the knotting probability as a function of chain length, because all cases with
n �= 0 (similar to non-trivial knots) reach maximal weight at some intermediate values of
r and/or t.

Sections 5.2 and 5.3 present our most original and most interesting findings. In particular,
we consider the following question. Given the closed random walk trajectory of the length t,
we consider �n—the locus of points around which the trajectory makes exactly n turns. Then,



Polymer ring entangled to an obstacle 8959

what is the area of �n? We denote by σn(t) the average (over the random walk trajectories)
of this area, then formula (44) provides the exact answer to this question. The essence is that
σn(t) decreases very slowly with n, only as 1/n2. Of course, ideologically this is similar to the
slow decay of the Spitzer distribution (1). Another look at the same result is to think about a
virial coefficient of a polymer ring with a long straight bar. Their interaction is topological in
nature [26], and the virial coefficient can be understood as the surface excluded for a polymer
ring by the presence of the obstacle if the ring is not entangled with the obstacle. This virial
coefficient is the sum of all σn(t) with n �= 0 , and it is exactly equal to πta2/12.

Note that the former view of σn(t) corresponds to the question about annealed topological
disorder, as it relates σn(t) to the probability of getting the topological state n. By contrast, the
latter view on the same quantities σn(t) corresponds closer to the idea of quenched topological
disorder, as it reflects on the physical property of the polymer with given n. Another such
physical quantity is the distance between the obstacle and an arbitrary point on the polymer.
The exact expression for the root-mean-square of such distance is given by formula (48). The
interesting aspect of this result is that this distance remains of the order of a

√
t and only quite

modestly depends on n, changing from approximately 0.496a
√

t when n = 1 to 0.408a
√

t

when n → ∞. The fact that this distance decreases with growing ‘topological complexity’
n is not surprising, but the fact that it changes only slightly is interesting. One could have
thought that the polymer would consist of n roughly similar loops, leading to the typical size
of a

√
t/n. Our result, therefore, suggests that even at very large n there remains one big loop,

with the length of order t, while all other loops are tight and small. This is reminiscent of knot
tightening recently discussed by Kardar and his co-workers [36].

In section 5.4, we make a brief comment on the elastic forces developing in the polymer
ring either pushed too close to the obstacle or pulled too far away from it.

Finally, in section 5.5 we consider polymer ring entangled with a finite-size obstacle, and
show that in this case the distribution over the linking number n decays exponentially at large
n, and the characteristic n is about ln(ta2/b2).

3. Green function formulation

3.1. Point-like obstacle

Consider a Gaussian polymer in 2D or, equivalently, a random walk in 2D. Suppose first that
the obstacle is point-like, positioned at O, the coordinate centre. The statistics of trajectories

is fully described by the Green function, G
(	r ′|	r

0 |t
)
, which is the partition function (or statistical

weight) of the chain having the monomer 0 at 	r ′ and monomer t at 	r . The Green function
satisfies the diffusion equation

∂tG

(	r ′

0

∣∣∣∣ 	r
t

)
= a2

4
�G

(	r ′

0

∣∣∣∣ 	r
t

)
+ δ(t)δ(	r − 	r ′) (3)

where the notation are standard: � is the Laplace operator acting on 	r, a is the monomer size, t
is polymer length (‘time’). The notation a2/4 adopted here for the diffusion coefficient, which
is in fact a2/2d, d being space dimension, is convenient because root-mean-squared end-to-
end distance of the trajectory with no obstacles equals exactly a

√
t . The Green function can

be written in terms of the bi-linear expansion over the corresponding eigenfunctions. Because
our goal is to address the obstacle at O, we choose eigenfunctions with cylindrical symmetry.
The ones with no singularity at O read Jµ(κr) e±ıµθ , where Jµ(x) is Bessel function of the
first kind, r and θ are polar coordinates corresponding to 	r , and −κ2 is the corresponding
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eigenvalue. Accordingly, we write

G

(
r ′, 0

0

∣∣∣∣ r, θ

t

)
= 1

2π

∫ ∞

0

∫ ∞

0
e−a2κ2t/4 cos(µθ)Jµ(κr)Jµ(κr ′)κ dκ dµ. (4)

It is worth noting explicitly that only positive µ > 0 contribute to this expansion, because
Jµ(x) with negative index µ is singular at small x.

In most cases in mathematical physics, the angular θ -dependence is 2π -periodic, meaning
that θ and θ ± 2πn label one and the same place on the plane. This is not the case for the
problem at hand. Indeed, Gt(r, 0|r ′, θ) is the statistical weight of trajectories (polymer
conformations) that start at a point some distance r away from the origin O and arrive after
‘time’ t at another point some r ′ from O, where it is assumed that by the time t the trajectory
has accumulated winding angle θ around O. Accordingly, for instance, θ = 0 means no turns
around O, while θ = 2π means one turn counterclockwise, θ = −2π is one turn clockwise,
etc. In other words, we should treat our plane as a Riemann surface, in which case θ and
θ ± 2πn correspond to different layers.

Most immediately, this means that not only integer, but all positive values of µ must be
included in the bilinear expansion (4).

It turns out that integration over κ can be explicitly performed; the derivation of the
relevant so-called Weber integral [33] is provided in appendix A. The result reads

G

(
r ′, 0

0

∣∣∣∣ r, θ

t

)
= 2

πa2t
e−(r2+ r ′ 2

)/a2t

∫ ∞

0
cos(µθ)Iµ

(
2rr ′

a2t

)
dµ (5)

where Iµ(x) is the modified Bessel function.
It is instructive to re-write the latter formula by introducing R—the distance between 	r

and 	r ′: 	R = 	r − 	r ′, or R2 = r2 + r ′ 2 − 2rr ′ cos θ . We can write

G

(
r ′, 0

0

∣∣∣∣ r, θ

t

)
=
[

1

πa2t
e−R2/a2t

]
W

(
θ,

2rr ′

a2t

)
(6)

where

W

(
θ,

2rr ′

a2t

)
= 2 e−2rr ′ cos θ/a2t

∫ ∞

0
cos(µθ)Iµ

(
2rr ′

a2t

)
dµ. (7)

The first factor in equation (6) (in square brackets) is simply the Green function of an
unrestricted polymer, or unrestricted random walk; in other words, it is the statistical weight
of all conformations going from 	r to 	r ′. Therefore, W measures the fraction of trajectories
with winding angle θ on the way.

Equations (5)–(7) were derived by Edwards [15].

3.2. Finite-size obstacle

Consider now an obstacle having the shape of a disc with some finite radius b. Since
the trajectory cannot make infinitely many turns around such obstacle, we expect that the
probability distribution for the number of turns should be completely different for this case as
compared to the point-like obstacle.

We use the same method as before. Equation (3) still applies, but as regards bi-liner
expansion, equation (4), we have now different set of eigenfunctions—the ones which
satisfy the boundary condition of being equal to zero at r = b. This boundary condition
removes all trajectories which cross the boundary, or, in other words, which enter the r < b
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region. The eigenfunctions, corresponding to the eigenvalue −κ2, can be written in the form
Zµ(κr, κb) eıµθ , where (see appendix B)

Zµ(κr, κb) = −Jµ(κr)Yµ(κb) + Jµ(κb)Yµ(κr)√
J 2

µ(κb) + Y 2
µ(κb)

. (8)

Here Yµ(x) is Bessel function of the second kind (another frequently used notation for Yµ(x) is
Nµ(x); we adopt here the notation used in Mathematica [34]). A few notes about functions Z
are provided in appendix B, including the proof that the square root in the denominator makes
them correctly normalized. Using Z, we write the Green function as a bi-linear expansion,
like equation (4):

G

(
r ′, 0

0

∣∣∣∣ r, θ

t

)
= 1

2π

∫ ∞

0

∫ ∞

0
e−a2κ2t/4 cos(µθ)Zµ(κr, κb)Zµ(κr ′, κb) κ dκ dµ. (9)

Unfortunately, no known analogue exists of the Weber integral for the Z-functions, and so,
unlike the b = 0 case above, we were unable to find any way to simplify this by performing
either of the two integrations.

Addressing the same problem of winding around the disc, Rudnick and Hu [5] have
already found the expression for the Green function. Formula (9) looks surprisingly different
from the known result [5]. In appendix C we show explicitly that these two results are
equivalent.

3.3. Winding inside the cavity

Yet another interesting model is shown in figure 1(c). It is a random walk or linear polymer
confined in a restricted volume, say, inside the disc of some radius B. Then, absorbing boundary
conditions should be imposed on this boundary. Assuming for simplicity that the obstacle
is located at the centre of the confinement disc, we obtain that equation (4) holds, except
integration over κ at every µ must be replaced by the sum over the discrete spectrum of κn(µ)

such that Jµ(κn(µ)B) = 0. As usually, as t → ∞ we can resort to the ground-state dominance
principle, which means we can truncate the summation to one leading term:

G

(
r ′, 0

0

∣∣∣∣ r, θ

t

)

 1

2π

∫ ∞

0
e−a2ξ 2

µt/4B2
cos(µθ)Jµ(ξµr/B)Jµ(ξµr ′/B) dµ (10)

where ξµ is the smallest root of the Bessel function Jµ(ξ).

4. Winding angle distribution: Spitzer law and related results

4.1. Winding around a point (b = 0)

The authors of the works [1, 2, 4–10] examined the problem of winding angle distribution in
the following formulation. Suppose the walker starts some distance r from the origin, and
suppose we are interested in the winding angle distribution irrespective of r ′, the distance from
the origin to the trajectory end. Formally, such probability distribution is obtained via suitable
integration of the Green function over r ′:

W(θ) ∝
∫ ∞

0
G

(
r, 0
0

∣∣∣∣ r ′, θ
t

)
r ′ dr ′. (11)

In appendix D, we show how to use the Weber integral to follow this path.
Unfortunately, in some other cases considered below, such as winding around a non-zero

size disc (b �= 0), we do not have the advantage of the Weber integral simplification from
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equation (4) to equation (5), which makes the explicit integration of the Green function over
r ′ difficult. Besides, for polymer applications it is natural to keep track of the end position
as long as possible. This is why it is useful to see how we can re-derive the Spitzer law (1)
directly from equation (4), not resorting to equation (5). This is what we shall do now.

We note that integration over κ in equation (4) is effectively truncated at κ2 � 4/ta2.
When t is large enough, this leads to both κr and κr ′ being small. Then the Bessel function can
be replaced by the first term of its expansion, Jµ(ξ) 
 1


(1+µ)

(
ξ

2

)µ
. After that, the integration

over κ is easily performed, yielding

G

(
r ′, 0

0

∣∣∣∣ r, θ

t

)

 1

πta2

∫ ∞

0

(
rr ′

ta2

)µ cos(µθ)


(1 + µ)
dµ. (12)

Assuming rr ′/ta2 � 1 (see the discussion a few lines below), we see that the integral over µ

is dominated by small µ in which area we can set 
(1 + µ) 
 1. In this approximation, the
integration over µ is elementary, and results in

G

(
r ′, 0

0

∣∣∣∣ r, θ

t

)

 1

πta2

ln(ta2/rr ′)
(ln(ta2/rr ′))2 + θ2

. (13)

This is the Cauchy distribution for the winding angle

W(θ) = 1

π

1

1 + x2
x = θ

ln(ta2/rr ′)
. (14)

This result is similar, but not identical to the Spitzer formula (1). The difference is in the
definition of the scaling variable x: formula (14), unlike (1), keeps track of the coordinates r
and r ′ of the trajectory ends. As we have already mentioned, this will be useful for polymer
applications. Note, however, that we cannot integrate over r ′ as in equation (11), because
formula (14) was derived under the assumption that r ′ is not too large.

How then can we recover the Spitzer law (1) from equation (14)? What we should do is
to note that one trajectory end is fixed at the distance independent of t, while the other is free,
meaning that r ∼ a and r ′ ∼ a

√
t . Then, we have for the scaling quantity x in formula (14)

x = θ/ln(ta2/rr ′) 
 2θ/ln t , which is indeed exactly the same as in equation (1).
Other interesting extremes are as follows:

• If r ∼ a and r ∼ at , then the ‘width’ of the distribution gets very small. This is the closest
approximation Gaussian model can provide for the idea that fully stretched polymer does
not have any freedom to wind around the obstacle. Of course, a Gaussian polymer cannot
be fully stretched, this is why, say, 〈θ2〉, remains divergent even when the ‘width’ goes to
zero.

• A similar situation is realized when r ∼ r ′ ∼ a
√

t : winding is suppressed when the
obstacle is removed to the periphery of the coil. Note that equation (14) should not be
used at larger r, when κr is not small and the Bessel function cannot be expanded.

• If both r ∼ a and r ′ ∼ a, then the result is only different from equation (1) by a factor
of 2 in the definition of x; in this case, x = θ/ln t . That means, fixing both ends and not
allowing them to wander freely reduces the ‘width’ by half.

4.2. Winding around a disc (b > 0)

For winding around a disc of finite radius b, we can use the same method. When t is large
enough, integration over κ in equation (9) is dominated by small κ . Accordingly, we can
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resort to the small κ expansion of Zµ(κr, κb) (see equation (B.19) and the discussion in
appendix B):

Zµ(κr, κb) 
 (r/b)µ − (r/b)−µ√[(
κb
2

)µ

(1 − µ) − (

κb
2

)−µ

(1 + µ)

]2
+ 2πµ tan πµ

2

. (15)

Accordingly, the κ-dependent factor in the Green function (9) can be presented in the form
e−g(κ), where

g(κ) = κ2ta2

4
+ ln


[(κb

2

)µ


(1 − µ) −
(

κb

2

)−µ


(1 + µ)

]2

+ 2πµ tan
πµ

2


 . (16)

Provided that µ < 1 (which is justified a few lines below), it is not difficult to establish
that g(κ) has a minimum, which dominates integration over κ at large t. Straightforward
differentiation yields for the corresponding κ the condition

κ2ta2 = 4µ

(
κb
2

)−2µ

2(1 + µ) − (

κb
2

)2µ

2(1 − µ)(

κb
2

)−2µ

2(1 + µ) +

(
κb
2

)2µ

2(1 − µ) − 2πµ cot πµ

. (17)

This equation has just one solution which at large t corresponds to small κ . More accurately,
the solution reads

κa

2





√

µ

t
when µ ln(ta2/b2)  1√

1
t ln(ta2/b2)

when µ ln(ta2/b2) � 1.

(18)

As it turns out, the integral over µ is dominated by µ � 1/ln(ta2/b2), so only the lower line
of equation (18) is relevant. For small µ, the expression for Zµ equation (15) can be further
simplified:

Zµ(κr, κb) 
 sinh(µ ln(r/b))

sinh(µ ln(2/κb))
. (19)

Then, replacing e−g(κ) with its maximal value, we arrive at the following expression for the
Green function:

G

(
r ′, 0

0

∣∣∣∣ r, θ

t

)
= A

∫ ∞

0
dµ cos(µθ)

sinh
(
µ ln r

b

)
sinh

(
µ ln r ′

b

)
sinh2

(
µ

2 ln ta2

b2

) (20)

plus some logarithmic corrections. In A we accumulated all the uninteresting constant
prefactors, which do not depend on θ , r, r ′ and b.

Now, considering this integral over µ, we have to justify all the assumptions and
approximations which we made on the way. First and foremost, the assumption that µ is
small is justified by the rapid convergence of the integral (20). Indeed, at large µ all three
sinh’s can be replaced by positive exponentials, leaving us with exp

[−µ
(
ln ta2

b2 − ln r
b
− ln r ′

b

)]
.

Since rr ′ � ta2, the latter two logarithms in the round brackets should be neglected. That
means, the convergence of the integral (20) is controlled by the sinh in the denominator, which
effectively truncates integration at µ smaller than 1/ln(ta2/b2). This is very good news. First
of all, since 1/ln(ta2/b2) � 1, this justifies the small µ simplification performed in formula
(19). Second of all, this also justifies the use of the lower line in the expression (18) for the
saddle point. Third, since only small µ contribute, the validity condition for the expansion of
Bessel functions in the first step of equation (15), which generally reads (κr)2 � 1 + µ, can
be simplified to r2 � a2t (and similarly r ′ 2 � a2t).
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Thus, all approximations leading to the expression (20) are self-consistent. The only task
left is to evaluate the integral (20). This task gets easier if we use the notation

α = 2π ln r
b

ln ta2

b2

α′ = 2π ln r ′
b

ln ta2

b2

x = 2θ

ln ta2

b2

. (21)

Then, formula (20) is transformed into the following expression for the probability distribution
of the winding angle θ , or, better, of the scaling variable x, at fixed r and r ′:

W(θ) = π

2αα′

∫ +∞

−∞

sinh(ξα/π) sinh(ξα′/π)

sinh2 ξ
eıxξ dξ (22)

where we have re-introduced the normalization factor, such that
∫ +∞
−∞ W(θ) dx = 1. This

integral can be reduced to the infinite sum of residues corresponding to the poles along the
imaginary axes on the complex ξ -plane. In turn, the resulting sum (which is the combination
of several geometric series) is easy for Mathematica [34], but can be also computed by hand.
One way or the other, here is the result

W(θ) = π

2αα′

× πx sinh πx sin α sin α′ + α sin α′[cos α′ − cos α cosh πx] + α′ sin α[cos α − cos α′ cosh πx]

[cosh πx − cos(α − α′)] × [cosh πx − cos(α + α′)]
.

(23)

Result (23) is unfortunately quite cumbersome, although it is symmetric and in some ways
quite nice. Its beauty is revealed by consideration of various limits. As we learned in the
case of point-like obstacle, the most interesting limit is when chain end is free, meaning that
r ′ ∼ a

√
t . Then, provided only that ta2  b2—which is necessary, as the walker must have

travelled much farther than the obstacle size b, we get α′ 
 π . In this case, we get

W(θ) = π

2

sin α/α

cosh πx + cos α

α→0−→ π/4

cosh2(πx/2)
(24)

where in the latter transformation we also noted that as the trajectory starting point is fixed,
r is independent of t, or α → 0 at large t. Thus, we recover formula (2). Importantly, the
definition of scaling variable x (21) becomes identical to that in (2), again under the same
condition ta2  b2.

As in the case of point-like obstacle, other interesting extremes are as follows:

• Both r ∼ a
√

t and r ′ ∼ a
√

t . In fact, this case is on the border of applicability of our
approximations, but qualitatively the result holds. Indeed, W(θ) becomes very narrow,
and approaches δ(x). This means, no turns are possible around the obstacle which is
away from the random walk trajectory.

• Another case, and also a border case in terms of applicability of our approximations,
is r ∼ at or r ′ ∼ at , implying an exponentially improbable straight trajectory. The
distribution is again sharply localized at small x.

• Both r and r ′ are independent of t, meaning that both α 
 0 and α′ 
 0. This case is
safely within the limits of applicability. Then,

W(θ) = π

2

πx sinh πx + 2(1 − cosh πx)

(1 − cosh πx)2
. (25)

As in the b = 0 case, this distribution, as one can easily check, is exactly two times more
narrow than that of (2). In this case, unlike b = 0, this statement can be formalized by
looking at the second moment of the distributions (2) and (25), which (in terms of x) turns
out equal 1/3 and 2/3, respectively.
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4.3. b → 0 limit: applicability conditions of the Spitzer formula

According to equations (1) and (2), winding angle distribution has finite variance at b �= 0 and
diverging infinite variance at b = 0. These equations leave it unclear what happens when the
obstacle gets smaller and smaller, or when b decreases and approaches 0. It is instructive and
interesting to use formula (23) to see what really happens when b → 0.

The important part of our analysis here is to realize that so far we have been using
several differently defined scaling variables x: see equations (1), (2), (14), (21). So far, it was
(hopefully) clear from the context in every place which x we have in mind. Now, when we
examine the b → 0 limit, we shall face several of these different x simultaneously, so we must
be certain as to which x is which. For the rest of this section, we adopt the notation in which
each x is labelled with the number of the defining equation: x1, x14, x21 (note that x2 is exactly
the same as x1: x1 ≡ x2). In particular, x in formula (23) is, of course, x21.

Speaking of different definitions of x, we should realize that so far we have been presenting
probability distributions W(θ) normalized with respect to integration over the corresponding
x. For our purposes now, it is more convenient to use the normalization condition with respect
to angle θ :

∫∞
−∞ W(θ) dθ = 1. For the formula (23), this means the factor 2/ln(ta2/b2) should

be incorporated; we do not re-write the formula for brevity.
The main reason why the difference between various x was unimportant so far is that at

t → ∞ all definitions converge to the same: x14 → x21 → x1 = 2θ/ ln t . However, when
b → 0, there appears a very broad intermediate range of times t such that although ta2  b2

(the trajectory is long enough to wind around the obstacle), but tb2 � a2:

a2/b2  t  b2/a2. (26)

This is the range which we must examine. In this range, to the leading approximation, x21

does not depend on time:

x21 = 2θ

ln ta2

b2


 θ

ln(a/b)
. (27)

Furthermore, there is a broad range of winding angle θ in which x21 is small.
Now, we should look at the quantities α and α′. When b → 0, both of them turn out to

be slightly below π . For instance,

α = 2π ln r
b

ln ta2

b2

= π
ln a

b
+ ln r

a

ln a
b

+ 1
2 ln t

≡ π − δ (28)

where

δ = ln ta2

r2

2 ln a
b

� 1. (29)

Similarly, α′ = π − δ′, with similarly defined δ′ � 1.
Thus, we can simplify formula (23) resorting to expansion of both numerator and

denominator over the powers of x21, δ and δ′. In fact, as we see from equations (27), (28) all
these expansions are ones over the inverse powers of ln(a/b), and we keep the leading terms
only. Incorporating, as explained above, the factor 2/ln(ta2/b2) 
 1/ln(a/b) to establish the
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normalization
∫∞
−∞ W(θ) dθ = 1, we finally get

W(θ) 
 1

ln a
b

π2

2 (δ − δ′)2(δ + δ′) + π4

2 (δ + δ′)x2
21

π2

2 (δ − δ′)2(δ + δ′)2 + π4

2 [(δ + δ′)2 + (δ − δ′)2]x2
21 + π6

2 x4
21

= 1

π

(
ln r ′

r

)2
ln

ta2

rr ′︸ ︷︷ ︸+ ln ta2

rr ′ θ
2

(
ln r ′

r

)2(
ln ta2

rr ′
)2︸ ︷︷ ︸+

[ (
ln r ′

r

)2︸ ︷︷ ︸+
(
ln ta2

rr ′
)2]

θ2 + θ4

 1

π

ln ta2

rr ′(
ln ta2

rr ′
)2

+ θ2
. (30)

For the two latter steps, we have plugged in the explicit expressions for δ, δ′ (28), and x21 (27),
and then neglected the δ−δ′ ∼ ln(r ′/r) terms (which we have underbraced in the intermediate
formula). The result is exactly the same as formula (14) (except it is normalized with respect
to integration over θ ).

From our analysis, we can now understand the cross-over between equations (2) and (1).
Specifically, the Spitzer formula (1) and its generalization (14) apply as long as two conditions
are met: t � a2/b2 and θ � ln(a/b). At longer times and/or larger angles, the exponential
tail of the distribution takes over. For instance, when we say the 〈θ2〉 diverges for winding
around a very small obstacle, this really means 〈θ2〉 ∼ (ln(a/b))2.

4.4. Winding inside a cavity

We start from equation (10). It is not difficult to realize that ξµ (the smallest zero of Jµ(ξ))
increases with µ. Therefore, when t gets large, the integration over µ is dominated by small
µ, as in all previous cases. At small µ, ξµ is a smooth non-singular function, we can linearize
it: ξµ 
 ξ0 + µξ ′

0. Numerically, ξ0 ≈ 2.405 and ξ ′
0 ≈ 1.543. To the same approximation,

Jµ(ξµr/B) 
 J0(ξ0r/B). Therefore, evaluation of the integral in equation (10) becomes
trivial, and the result reads

G

(
r ′, 0

0

∣∣∣∣ r, θ

t

)

 1

2
J0

(
ξ0r

B

)
J0

(
ξ0r

′

B

)
W(θ) (31)

where the probability distribution of the winding angle is given by

W(θ) = 1

π

ta2ξ0ξ
′
0/2B2

(ta2ξ0ξ
′
0/2B2)2 + θ2

. (32)

The decoupling of the ends r and r ′ in formula (31) is not surprising, this is the property
of random walk locked in a restricted volume, and it is due to the fact that correlations are
broken every time that the trajectory is reflected from the cavity border. As regards probability
distribution of winding angle, it is once again the Cauchy distribution; however, the scaling
variable involves θ/

√
t instead of θ/ln t for the random walk in an unrestricted space. This

is also because correlations are broken every time that the trajectory hits the border. One can
say that pieces of random walk with length about (B/a)2 act independently of each other.

This gives rise to the following simple scaling argument providing an insight into the
result (31). The winding angle distribution for every ‘blob’ of the length ∼(B/a)2 is given
by the Spitzer formula (1), with the replacement t → (B/a)2. Now, we have t/(B/a)2 of
such blobs. Since blobs are independent, the probability distribution of the sum of all winding
angles of all blobs is given as a convolution. In other words, Fourier transform of the Spitzer
distribution for one blob, which is e−|µ| ln(B/a)2

, must be taken to the power t/(B/a)2. Apart
from logarithmic corrections, this returns the result (31).

Thus, the reason why 〈θ2〉 diverges for the polymer inside the cavity is because every
blob can make many turns around the point-like obstacle on a small scale, before ever hitting
the border of the cavity.



Polymer ring entangled to an obstacle 8967

5. Ring polymer: Edwards–Prager–Frisch model

We now want to make one step closer to the attempt of gaining insight into the properties of
closed ring polymers. One way in this direction would be to say that a ring polymer is the
random walk trajectory whose end points happen to coincide, namely r = r ′ and θ = 2πn,
where integer n (positive, negative, or zero) is the linking number (number of turns). Our
results (14), (23), (25), (32) are suitable for this, and we shall do it. It turns out also useful,
however, to derive some additional results independently. In particular, some of the results
below are exact (not asymptotically exact, but just exact).

5.1. Point-like obstacle: a ring with one monomer anchored

Thus, we return to equations (6), (7), and use them this time to write the statistical weight of
the ring polymer conformations with linking number n and with one monomer fixed at the
distance r from O:

Gn(r, t) ≡ G

(
r, 0
0

∣∣∣∣ r, 2πn

t

)
= 1

πa2t
Wn(ξ)

(33)

Wn(ξ) = 2 e−ξ

∫ ∞

0
cos(2πnµ)Iµ(ξ) dµ ξ = 2r2

a2t
.

In this formula, Gn(r, t) is the statistical weight of the ring with n turns, while the prefactor
1/πa2t is the statistical weight of a ring with no topological constraints5. Therefore, Wn(ξ)

is the probability that polymer ring fixed at one point r makes n turns around the obstacle. In
appendix E we check explicitly that Wn satisfies the normalization condition as a probability.

Similarly to what we did before, we can address the case ta2  r2, or ξ � 1. In this
case, we truncate the small ξ expansion of Iµ(ξ) 
 (ξ/2)µ /
(1 + µ), replace 
(1 + µ) 
 1
(compare equation (D.1)) and then obtain

Wn(ξ) 
 2(1 − ξ)
ln(2/ξ)

(ln(2/ξ))2 + 4π2n2
ξ → 0. (34)

Of course, this is nothing else but the ‘discrete’ version of the Spitzer distribution. However,
merely taking θ = 2πn in equation (14) is not enough, as the normalization factor in (14)
corresponds to

∫ +∞
−∞ W(θ) dθ = 1, while in equation (34) it corresponds to

∑+∞
n=−∞ Wn(ξ) = 1.

For a polymer, it makes perfect sense to examine also the opposite extreme, ξ  1. The
corresponding asymptotics are easy to derive from the somewhat simplified expression for
Wn(ξ).

We can afford further simplification of the expression (34) for Wn(ξ) resorting to the
following integral representation of the modified Bessel function [35]:

Iµ(ξ) = 1

2π

∫ π

−π

eξ cos β cos(βµ) dβ − sin(µπ)

π

∫ ∞

0
e−ξ cosh u−µu du (35)

which is generally valid at |Arg ξ | � π/2 and Re µ > 0. Both of these conditions are met in
our case. Substituting this into equation (34), one can easily perform the integration over µ

5 Using the notion of statistical weight, one has to be conscious of the issue of distinguishability of monomers. For
instance, if all of them are exactly identical, then extra factor t must be incorporated in the statistical weight of a
ring. Here, we assume that since one monomer is anchored, the monomers are distinguishable by their numbering
along the chain starting from the anchored place. It is also not difficult to establish that difficulties do not arise later,
in section 5.2 when we consider a ring with no anchored monomer. We are indebted to I Ya Erukhimovich for this
important comment.
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Figure 2. Wn(ξ) is the probability to form a link of order n with the point-like obstacle provided
that one of the chain points is fixed at the distance r away from the obstacle, where ξ = 2r2/a2t, t

being the chain length. The plots present the result of numerical integration based on formula (36).
The plot of W0(ξ) is presented in the main figure. Wn(ξ) with n > 0 would not be seen well in this
scale. For both W1(ξ) and W2(ξ), we show the inset, each presenting the vicinity of the maximum;
the corresponding places in the main figure are shown by tiny dark rectangles. However small may
seen every particular Wn(ξ), it should be born in mind that together they sum up to 1 − W0(ξ).

yielding

Wn(ξ) = �n0 +
∫ ∞

0
du e−ξ(1+cosh u)

[
2n − 1

u2 + π2(2n − 1)2
− 2n + 1

u2 + π2(2n + 1)2

]
(36)

where �n0 is the Kronecker symbol (1 for n = 0 and 0 otherwise). The latter result for n = 0
is worth re-writing separately:

W0(ξ) = 1 − 2
∫ ∞

0

e−ξ(1+coshu)

u2 + π2
du. (37)

Equations (36), (37) are convenient enough to address the ξ  1 extreme. Indeed, when
ξ is large, the integral converges at small u, which allows us to neglect u everywhere except
in the exponential factor, where we can also truncate the cosh u 
 1 + u2/2. This yields

Wn(ξ) 





√
2/π3

4n2−1
e−2ξ√

ξ
n �= 0

ξ → ∞
1 −

√
2/π3 e−2ξ√

ξ
n = 0

. (38)

Thus, comparing (34) and (38) all Wn(ξ) start at 0 at ξ = 0 and grow very rapidly at small ξ .
At n = 0,W0(ξ) keeps increasing monotonically with ξ , and W0(ξ) approaches the saturation
level of 1, while all Wn(ξ) with n �= 0 decrease and rapidly die away at large ξ . Obviously,
each of them goes through a maximum. It is not difficult to establish that the maximum of
Wn(ξ) corresponds to ξ ∼ 1/ cosh(π

√
4n2 − 1) which at large n corresponds to ξ ∼ e−2πn.

This is consistent with the fact that small ξ asymptotics (34) is valid at ξ � e−2πn.
Equation (36) allows also straightforward numerical integration which results in the plots

shown in figure 2.
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5.2. Ring polymer entangled with a point

For the ring polymer, it is not very natural to consider one monomer being fixed at r; all
monomers of a ring are equivalent. Accordingly, it is natural to define the quantity

σn(t) =
∫ ∞

0
Wn(ξ)2πr dr = πa2t

2

∫ ∞

0
Wn(ξ) dξ. (39)

What is σn(t)? This quantity has the units of surface area and can be interpreted in the following
way. Suppose a ring polymer moves freely on the plane within some large area A (much larger
than the polymer size, so the polymer is not restricted in terms of its conformation). Consider
one particular conformation of our polymer and then choose a random point O within A. Then
σn/A is the probability that polymer makes an n-fold link around O. We expect physically
that σ0 should be large, almost as large as A. This is also seen directly from equation (37):
when integrated over the whole area A, the first term (unity) yields just A. This is because
when O is outside the coil, there may not be any topological links. If and only if the random
point O is located within the polymer coil can there be any topological link. Therefore, σ0

should be less than A by a quantity of the order of the coil gyration radius squared, which is
of the order ta2. On the other hand, σn with n �= 0 should be themselves of order ta2, or even
smaller.

Another way of understanding of σn(t) is this. Consider one particular conformation of a
ring and consider the set of points �n such that the polymer makes linking with n turns around
every point of �n. Then, σn(t) is the surface area, or the measure, associated with the set �n.

Trying to compute σn(t), we can resort to either expressions (34) or (36). Let us first
explore the first possibility:

σn(t) = πta2
∫ ∞

0
e−ξ

∫ ∞

0
cos(2πnµ)Iµ(ξ) dµ dξ. (40)

Here, we face a difficulty, because the integral∫ ∞

0
e−ξ Iµ(ξ) dξ (41)

diverges at large ξ . What is the physical meaning of this? Of course, this is because σ0(t)

is close to A, or, in other words, it is divergent unless we take into account overall volume
restriction. We conclude, therefore, that the integral (41) diverges for a good reason: this
is because unlinked polymer is free to move away from the obstacle, making σ0 as large as
(almost) A.

This hints on the way to circumvent the problem. Let us assume that the polymer is
attached to the point O by a very weak spring. Since such polymer does not move away even
when there are no topological links, we expect that even σ0 should remain finite, independent
of A. Indeed, instead of (41) we have now∫ ∞

0
e−αξ Iµ(ξ) dξ = 1√

α2 − 1
(
α +

√
α2 − 1

)µ (42)

which converges at any α > 1; here α − 1 is the effective spring constant. Of course, we will
take α → 1 at the end. Performing the remaining integration over µ, we arrive at

σn(t, α) = πta2 ln
(
α +

√
α2 − 1

)
√

α2 − 1
[
(2πn)2 +

(
ln
(
α +

√
α2 − 1

))2] . (43)

As expected, the α → 1 limit can now be performed with no difficulties at every n �= 0,
yielding finally

σn(t) = ta2

4π

1

n2
n �= 0. (44)
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Accordingly,

σ0(t) = A −
∑
n�=0

σn(t) = A − π

12
ta2. (45)

That result exactly can also be obtained plugging equation (36) into equation (39), although,
somewhat surprisingly, calculations are more involved along this route.

We would like to remind our reader once again that σn(t)/A is the probability of having
linking number n for the polymer of the length t. As the probability distribution, σn has the
peculiarity that all its moments obviously diverge, even just the average linking number is
infinite. It is not difficult to trace this back to the fact that infinitely flexible polymer, as
represented by the Brownian random walk trajectory, can make infinitely many turns around
a point-like obstacle. We shall address this further later.

It is worth emphasizing that the results (44), (45) are exact, their validity does not require
even that t is large—they are exact at any t.

5.3. How far is the ring from the point-like obstacle?

One more interesting quantity to look at is 〈r2〉: the mean squared distance of one particular
point on the ring to the obstacle, O. To determine the probability distribution for r, we note
that σn(t) plays the role of a partition function. The probability density for r reads

G

(
0,r

0

∣∣ 2πn,r

t

)
∫∞

0 G

(
0,r

0

∣∣ 2πn,r

t

)
2πr dr

= Wn(ξ)

σn(t)
. (46)

When computing 〈r2〉 from this, formula (43) comes in handy, as 〈r2〉 is basically the derivative
of σn(t, α) with respect to α at α = 1:

〈r2〉 = π

σn(t)

(
a2t

2

)2 ∫ ∞

0
Wn(ξ)ξ dξ = − a2t

2σn(t)

∂σn(t, α)

∂α

∣∣∣∣
α=1

. (47)

Straightforward calculation yields

〈r2〉 = a2t

6

[
1 +

3

2πn2

]
. (48)

The result is interesting. Surprisingly, it goes to a finite constant proportional to the unperturbed
coil size ta2 in the limit of very strong linking, n → ∞. This should be understood by noting
that even very large number of turns will be produced by a short piece of a trajectory, leaving
a long part, of the order t, unentangled, with the size of order a2t .

This is reminiscent of the recent findings by Kardar and his co-workers [36] in which
they claim that in many cases real knots in three-dimensional polymeric loops are entropically
dominated by conformations with the knot tightened in a short piece of polymer, and with the
rest of the polymer fluctuating freely with no knots.

5.4. Force

When winding model was first introduced in the polymer physics [15–17], it was done mostly
in connection with problems related to the rubber elasticity. Accordingly, elastic force, or
force-extension curve, was the primary subject of interest. In case of DNA, such a curve
can be also measured using some sort of a single-molecule technique [37]. Although both in
rubbers and in DNAs real forces have both entropic and enthalpic contributions, in the winding
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model the force has purely entropic nature and, therefore, it is proportional to kBT in standard
notation, where kB is Boltzmann constant and T is absolute temperature. In our notation, the
force fn which should be applied to the polymer to keep one of its links a certain distance r
from the obstacle O at the fixed topological invariant n is given by

fn

kBT
= −∂ ln Wn

∂r
= − 4r

ta2Wn

∂Wn

∂ξ
. (49)

We have not found any simple closed expression for the force, in this sense we make really
no progress on this point compared to the papers [15–17]. Nevertheless, qualitatively, one
glance at the figure 2 is sufficient to realize that the force f0 of an unentangled ring is always
positive. This is obviously because this ring is topologically repelling the obstacle. On the
other hand, when n �= 0, the force is positive, corresponds to repulsion, only when r (or ξ ) is
small enough. At larger r (or ξ ), the force flips sign and becomes negative, which obviously
corresponds to the elastic stress caused in the polymer ring by an attempt to pull it away from
the obstacle with which the ring is entangled.

5.5. Ring polymer entangled with a finite-size disc

For the obstacle of finite radius b, we were unable to obtain exact answers similar to
equations (44) or (48). All we can do for this case is to resort to the asymptotic calculations.
One of the advantages of the finite-size obstacle model is that it allows us to examine both
asymptotics, we call them loose entanglement and tight entanglement, respectively. The
former regime is realized when the size of the obstacle b is smaller than typical polymer coil
dimension at1/2, and, moreover, when minimal length necessary to make n turns, 2πbn, is still
small compared to at1/2: nb � at1/2. In this case, calculations are similar to those of section
4.2. In the opposite extreme, when nb  at1/2, polymer has to be significantly stretched out
to make all n turns. This corresponds to the far tail of winding angle distribution, which is
usually not examined and which we did not consider in section 4.2.

5.5.1. Loose entanglement. All we can do for this case is to resort to the asymptotic
calculations similar to those of section 4.2. In fact, the calculations are almost identical, and
at the end they return essentially the result (25), with the only difference in the normalization
factor. Specifically, the probability of having linking number n is proportional to

Wn ∝ πxn sinh πxn + 2 (1 − cosh πxn)

(1 − cosh πxn)
2 (50)

where the omitted normalization factor must be defined such that
∑∞

n=−∞ Wn = 1, and where

xn = 4πn

ln ta2

b2

. (51)

Similarly, although we cannot find the exact expression for the value of σn(t), but the estimate
reads σn(t) ∼ [πb2 + r2Wn]r∼a

√
t .

Thus, quantities such as Wn and σn(t) decay exponentially at very large n, and the
characteristic n where exponential decay starts is about ln(ta2/b2). This latter quantity
estimates also the characteristic linking number in another sense, defined as the root mean
squared,

√
〈n2〉. This is an interesting and somewhat unexpected result. Indeed, one could

have naively expected that the characteristic value of n should be proportional to ta2/b2.
Indeed, we expect that one turn around the obstacle should be similar to walking a distance
about 2πb ∼ b, which requires a time τ ∼ b2/a2, implying the number of turns to be about
t/τ . Instead, we are getting something like ln(t/τ ). This happens because a large portion
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r

b ϑ

Figure 3. Tight entanglement, or ‘ray optics’ limit. In this figure, for the ease of drawing, we
assume that the polymer makes just a little more than one turn around the obstacle, while its ends
are fixed at the given points. Distance to one end r and the corresponding angle ϑ are shown in
the figure; similar distance r ′ and angle ϑ ′ are not shown to simplify the figure.

of the chain length deviates much further away from the obstacle than b, and it makes turns
around a much larger circumference. This once again suggests that knot tightening [36] occurs
even in this case of a disc-like obstacle with excluded volume.

Similar to our discussion in section 4.3, we can understand what happens when b → 0.
In this case, there appears a wide interval of polymer chain lengths b2/a2 � t � a2/b2 in
which, say, σn(t) decays only as 1/n2 in the wide interval of n, up to a large value of n of
about ln(a/b).

5.5.2. Tight entanglement. The tight entanglement regime is realized when n2b2  ta2. In
this case, polymer barely has enough length to make n turns around the obstacle. Obviously,
the dominant polymer conformations are those tightly wound around the obstacle. This
regime is similar to ray optics [39]. Indeed, if one searches for the solution of diffusion
equation (3) in the form G = exp[s(	r, t)] and assumes that s is (in a proper sense) a slowly
changing function, then the so-called eikonal equation for s results:

−∂s

∂t
= a2

6
( 	∇s)2. (52)

For the system at hand, namely a polymer with winding angle θ around the obstacle of radius
b, this equation allows for the exact solution

s = 3

2a2

L2

t
(53)

where L is the shortest distance between fixed ends consistent with the topological constraint
(that is, with the given winding angle):

L = b(θ − ϑ − ϑ ′) +
√

r2 − b2 +
√

r ′ 2 − b2. (54)

Here, ϑ and ϑ ′ are determined by the conditions cos ϑ = b/r and cos ϑ ′ = b/r ′. Both these
conditions and the solution itself are quite easy to establish based on the geometry presented
in figure 3. It is also easy to check by direct differentiation that formulae (53), (54) present an
exact solution of the eikonal equation (52).

5.6. Ring polymer inside a cavity

Our discussion in the previous section is additionally illuminated by the problem of a ring
polymer entangled with an obstacle while confined in a cavity of the radius B. In this case,
result (32) directly applies, apart from the replacement θ → 2πn, and the proper normalization
factor. We see that in this case the characteristic value of n is proportional to ta2/B2. This



Polymer ring entangled to an obstacle 8973

number can be understood by saying that polymer is confined to a tube of the width D = B

and length L = nB, where the typical n must be determined such that confinement entropy is
similarly contributed by chain squeezing across the tube and stretching along the tube (compare
similar arguments in [40]). The confinement entropy is well known [41], it is proportional to
ta2/D2 + L2/ta2, where the two terms correspond to the two factors just mentioned—chain
squeezing across the tube and stretching along the tube, respectively. Equating the two terms,
we arrive at n ∼ ta2/B2, as expected.

6. Concluding remarks

We have focused on a special application, a toy Edwards–Prager–Frisch model [15, 16], and
its generalization. It can be viewed as a model of an unsymmetrical infinite catenane. This
catenane is formed from a random walk of t steps and ‘entwined’ with infinite, rigid, closed
structure composed of two straight legs, which are separated at least by a distance larger than
ta, meeting at infinity. As such it allows one to extrapolate a limiting probability of catenation
by a closed random walk, which is consistent with earlier estimates.

This model is widely recognized as the simplest playground for ‘statistical mechanics with
topological constraints’ [15]. Unfortunately, no simple notable result had previously come out
of this model studies—except the very fact that it is ‘exactly solvable’. We were lucky to find
a couple of such simple results. First, looking at the entanglement as an element of ‘annealed’
disorder, we found that the area associated with all points around which closed random walk
makes exactly n turns is equal to 〈R2〉/4πn2, where 〈R2〉 is the mean-square end-to-end
distance of the linear walk of the same length. Second, looking at the entanglement as an
element of ‘quenched’ disorder, we found that the mean-squared distance between an obstacle
and an arbitrary monomer of an n times entangled ring is equal to (1/6)〈R2〉[1 + 3/2πn2].
Both results are exact. We have also found that the entanglement of a very long polymer is
very uneven, in the sense that it tends to segregate into one very long loop, almost as long as
the entire polymer, and a number of much shorter loops.

The generalization of Edwards–Prager–Frisch model, in which an obstacle is not a point,
but a disc of finite radius b, as far as we could tell, does not allow for an exact solution in
any useful closed form. However, we were able to show that for annealed loop the mean-
squared linking number turns out to be finite, of order 〈n2〉 ∼ ln(a/b). As b increases,
the entanglement becomes increasingly tight, resulting in all loops being of comparable
length.

Our deliberations clearly reflect three aspects: the first is the fruitful nature of
Spitzer’s [1] original insight for both further theory and its applications. The second is
the value of self-consistent approximations in the field when direct exact calculations are
precluded by mathematical difficulty. And, last but not least, the third is the usefulness
of complete analysis of those simplified models which do allow for mathematically exact
solutions.
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Appendix A. Weber integral

First let us prove an auxiliary relation∫
e−α2(	r−	r ′)

2

ψκ(	r ′) d2	r ′ = π

α2
e−κ/4α2

ψκ(	r) (A.1)

where ψκ(	r) is an eigenfunction of the Laplacian operator corresponding to the eigenvalue

−κ2: �ψ = −κ2ψ(	r). To see this, we note that (α2/π) e−α2(	r−	r ′)
2

is the Green function
of the diffusion equation in which α2 plays the role of 1/Dt , with D and t being diffusion
coefficient and time, respectively. Therefore, this exponent can be written in terms of a bilinear
expansion

α2

π
e−α2(	r−	r ′)2 =

∑
k

ψk(	r)ψk(	r ′) e−k2/α2
(A.2)

where the summation runs over the entire spectrum of the Laplacian operator. By making a
dot product of both sides with ψκ , we arrive at the result (A.1).

Let us now use the formula (A.1) choosing ψκ = Jn(κr) eınθ . At any n, this is indeed one
of the eigenfunctions of the Laplacian operator, corresponding to the eigenvalue −κ2. Now,
we make use of the following relation∫ 2π

0
eα2 cos φ+ıµφ dφ = 2πIµ(α2) (A.3)

which is most frequently encountered as an integral representation of the modified Bessel
function Iµ. This relation leads to∫ ∞

0
Jµ(κy)Iµ(2α2xy) × e−α2y2

y dy = eα2x2− κ2

4α2
Jµ(κx)

2α2
. (A.4)

Changing variables, we finally obtain the two formulations of the Weber integral:

∫ ∞

0
Jµ(κy)Iµ(κ ′y) × e−α2y2

y dy = e
κ′2−κ2

4α2

2α2
Jµ

(
κκ ′

2α2

)
(A.5)∫ ∞

0
Jµ(κy)Jµ(κ ′y) × e−α2y2

y dy = e− κ′2+κ2

4α2

2α2
Iµ

(
κκ ′

2α2

)
.

The latter formula is what needs to be used to go from equation (4) to equation (5).

Appendix B. Some properties of the functions Z

Appendix B.1. Orthogonality

First of all, we want to prove here that the functions Zµ(κr, κb), as defined by
equation (8), are orthogonal and normalized:∫ ∞

b

Zµ(κr, κb)Zµ(κ ′r, κ ′b)r dr = 1

κ
δ(κ − κ ′) (B.1)

∫ ∞

0
Zµ(κr, κb)Zµ(κr ′, κb)κ dκ = 1

r
δ(r − r ′). (B.2)
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Note that when b → 0, we have Zµ(κr, κb) 
 Jµ(κr) (because in this case Yµ(κb) is
negative and large in absolute value), so in this limit both equations (B.1) and (B.2) come back
to the well-known relation [38]∫ ∞

0
Jµ(κr)Jµ(κ ′r)r dr = 1

κ
δ(κ − κ ′). (B.3)

In what follows, we derive relations (B.1), (B.2). For simplicity of notation, it is easier to
compute the normalization of the functions

Uµ(κr, κb) = −Jµ(κr)Yµ(κb) + Jµ(κb)Yµ(κr) (B.4)

from which the properties of Z will follow automatically. Derivation consists of two parts,
one of them is trivial, and the other is only slightly less trivial.

Appendix B.1.1. Trivial part. To begin with, there is a useful general formula∫
U 2

µ(κr, κb)r dr = κ2r2 − µ2

2κ2
U 2

µ +
r2

2κ2

(
∂Uµ

∂r

)2

(B.5)

which is valid for any solution of Bessel equation, that is, for any linear combination of Jµ(κr)

and Yµ(κr), including the Uµ. The derivation of this formula can be found in many places,
for instance, [38]. One way is to take (r∂Uµ/∂r)2 and differentiate it over r. Remembering
that Uµ satisfies Bessel equation, it is easy to find

∂

∂r

(
r
∂Uµ

∂r

)2

= 2r2

[
µ2

r2
− κ2

]
Uµ

∂Uµ

∂r
(B.6)

from which equation (B.5) follows automatically.
We cannot directly apply this formula for the case of an infinite interval, because it yields

the divergence (due to the r2U 2
µ term: Uµ decays only as 1

√
r at large r). Indeed, this is not

surprising, since the answer (B.1) contains a δ-function. Thus, what we shall do is to consider
first the finite width ring b < r < B, with boundary condition Uµ|r=B = 0. At the end, we
shall send B → ∞.

Assuming Uµ(κr, κb)|r=B , we get from (B.5)∫ B

b

U 2
µ(κr, κb)r dr =

[
r2

2κ2

(
∂Uµ

∂r

)2
]B

b

. (B.7)

The derivative ∂Uµ/∂r can be simplified, because it is related to the Wronskian of Jµ(κr) and
Yµ(κr), which is equal to 2/πκr . Taking into account the boundary condition

Yµ(κb)Jµ(κB) = Yµ(κB)Jµ(κb) (B.8)

we obtain∫ B

b

U 2
µ(κr, κb)r dr = 2

κ2π2

[
J 2

µ(κb)

J 2
µ(κB)

− 1

]
= 2

κ2π2

[
Y 2

µ(κb)

Y 2
µ(κB)

− 1

]
. (B.9)

If we have two different values, κ �= κ ′, both satisfying boundary condition (B.8), then∫ B

b

Uµ(κr, κb)Uµ(κ ′r, κ ′b)r dr = 0 (B.10)

as can be established either by proper integration by parts using the Bessel equation, or by direct
reference to the fact that these U are the eigenfunctions of a Hermitian operator belonging to
different eigenvalues. Thus, we can use the Kroneker symbol to write∫ B

b

Uµ(κr, κb)Uµ(κ ′r, κ ′b)r dr = 2

κ2π2

[
J 2

µ(κb)

J 2
µ(κB)

− 1

]
�κκ ′ . (B.11)
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Here, we sacrificed the beauty of symmetry and used the upper line of equation (B.9); the
same final answer is obtained from the lower line.

Appendix B.1.2. Slightly less trivial part. We have to perform now the limit B → ∞. The
difficulty is that when B changes, so does also κ , since it is subject to boundary condition (B.8).
To circumvent this problem, the following trick is suggested. Let us choose some particular
value of κ , then boundary condition (B.8) is satisfied by some discrete set of B values. Let us
send B → ∞ stepping over these specific values and thus keeping κ fixed. Then, when B is
already large enough, we can resort to the well-known asymptotics

Jµ(x) 

√

2

πx
cos

[
x − π

2

(
µ +

1

2

)]
Yµ(x) 


√
2

πx
sin

[
x − π

2

(
µ +

1

2

)]
.

(B.12)

Then, formula (B.11) yields∫ B

b

Uµ(κr, κb)Uµ(κ ′r, κ ′b)r dr = 2

κ2π2

[
πκB

2

J 2
µ(κb)

cos2
[
κB − π

2

(
µ + 1

2

)] − 1

]
�κκ ′ . (B.13)

On the other hand, we can also use asymptotics (B.12) for Jµ(κB) and for Yµ(κB) to simplify
the boundary condition (B.8); by some easy manipulations, we can re-write this boundary
condition in the form

1 +

[
Yµ(κb)

Jµ(κb)

]2

= 1

cos2
[
κB − π

2

(
µ + 1

2

)] . (B.14)

Then, formula (B.13) yields to the leading order in B:∫ B

b

Uµ(κr, κb)Uµ(κ ′r, κ ′b)r dr = B

κπ

[
J 2

µ(κb) + Y 2
µ(κb)

]
�κκ ′ . (B.15)

Finally, we argue that at large B the Kronecker � should be replaced with Dirac δ

according to

�κκ ′ → π

B
δ(κ − κ ′). (B.16)

To make this conclusion, we switch to the view point in which B can be arbitrary, while −κ2

and −κ ′ 2 are the eigenvalues which depend on B. Then, when B → ∞, the eigenvalues come
closer to one another, with the interval between neighbouring κ equal to π/B, as it is clear
from the asymptotics of Bessel functions (B.12). Therefore, any sum involving Kroneker �

can be transformed into the integral∑
κ ′

. . . �κκ ′ →
∫

. . . �κκ ′
dκ ′

π/B
(B.17)

which means precisely (B.16).
Taken together, equations (B.15) and (B.16) yield the answer∫ ∞

b

Uµ(κr, κb)Uµ(κ ′r, κ ′b)r dr = J 2
µ(κb) + Y 2

µ(κb)

κ
δ(κ − κ ′) (B.18)

which is essentially formula (B.1). Formula (B.2) follows automatically from (B.1) and the
fact that functions Zµ form a complete set, which, in turn, follows from the very general
spectral consideration.
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Appendix B.2. Asymptotics of Z

Here, we first briefly describe the derivation of the small κ asymptotics of Zµ(κr, κb),
equation (15). Knowing that [38]

Jµ(ξ) 
 (ξ/2)µ


(1 + µ)
Yµ(ξ) 
 (ξ/2)µ


(1 + µ)
cot πµ − (2/ξ)µ


(1 − µ)

1

sin πµ
(B.19)

at ξ 2 � 1 + µ, and using the identity


(1 + µ)
(1 − µ) sin πµ = πµ (B.20)

and not resorting to any further approximations, we arrive at equation (15).
For completeness, we also mention the large κ asymptotics of Z, which turn out to be

particularly nice:

Zµ(κr, κb) 

√

2

πκr
sin(κ(b − r)). (B.21)

Appendix C. Alternative representation of the Green function

Consider again the diffusion equation, which at t > t ′ reads

∂G

∂t
= a2

4
�G (C.1)

subject to the initial and the boundary conditions

G|t=0 = δ(	r − 	r ′) G|r=b = 0 G|r→∞ → 0. (C.2)

Let us denote

Gp,µ(r, r ′) =
∫ ∞

0
e−pt

∫ +∞

−∞
eıµθG(t, 	r, 	r ′) dθ dt. (C.3)

This satisfies

1

r2

∂

∂r
r2 ∂

∂r
Gp,µ(r, r ′) −

[
4p

a2
+

µ2

r2

]
Gp,µ(r, r ′) = − 4

ra2
δ(r − r ′). (C.4)

The solution of this equation is the linear combinations of the Bessel functions Kµ and Iµ.
Making it to satisfy the boundary conditions at r = 0, r → ∞, and at r = r ′ (the latter
dictated by the δ-function), one arrives at

Gp,µ(r, r ′)=




4
a2

Kµ

(
2r′√p

a

)
Kµ

(
2b

√
p

a

) [Iµ

( 2r
√

p

a

)
Kµ

( 2b
√

p

a

)− Iµ

( 2b
√

p

a

)
Kµ

( 2r
√

p

a

)]
when r < r ′

4
a2

Kµ

(
2r

√
p

a

)
Kµ

(
2b

√
p

a

) [Iµ

( 2r ′√p

a

)
Kµ

( 2b
√

p

a

)− Iµ

( 2b
√

p

a

)
Kµ

( 2r ′√p

a

)]
when r > r ′.

(C.5)

As expected, this is the symmetric function of r and r ′. This formula was already obtained in
[5] (equation (2.9) of that work).

What we should do now is to invert the respective Laplace and Fourier transforms:

G(r, r ′, θ, t) = 1

(2π)2ı

∫ ∞

−∞

∫
C

e−ıµθ eptGp,µ(r, r ′) dp dµ (C.6)

where C is the vertical contour in the plane of complex variable p which should be to the right
of all singularities of Gp,µ. Knowing the explicit expression of Gp,µ, equation (C.5), we see
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C

C1

pbranch cut

Figure 4. Integration contours on the complex p-plane. Explanations are in the text.

that it has the singularity at p = 0. This singularity is due to both the branch point of
√

p and
the singular behaviour of many Bessel functions at zero. Then, it is convenient to place the
branch cut along the negative real axis in complex p-plane, and then to deform the contour
from C to C1, as shown in figure 4. Then, because of the branch cut, on the lower side of the
contour C1 we have p = e−ıπ |p|, while on the upper side we have p = eıπ |p|. Furthermore,
instead of |p|, it is convenient to introduce the new variable, κ , such that |p| = κ2a2/4. Then,
integrals along the lower and along the upper sides of the contour C1 are each represented by
integration from 0 to ∞ over κ . We can combine these two integrals together, and then simple
algebra yields

G(r, r ′, θ, t) = 2ı

(2π)2

∫ ∞

−∞

∫ ∞

0
e−ıµθ e−κ2a2t/4

×
{

Kµ(ıκr ′)
Kµ(ıκb)

[Iµ(ıκr)Kµ(ıκb) − Iµ(ıκb)Kµ(ıκr)]

− Kµ(−ıκr ′)
Kµ(−ıκb)

[Iµ(−ıκr)Kµ(−ıκb) − Iµ(−ıκb)Kµ(−ıκr)]

}
κ dκ dµ.

(C.7)

The expression in curly brackets here can be simplified using the following three relations:

Iµ(ıκr)Kµ(ıκb) − Iµ(ıκb)Kµ(ıκr) = Iµ(−ıκr)Kµ(−ıκb) − Iµ(−ıκb)Kµ(−ıκr)

= −π

2
[Jµ(κr)Yµ(κb) − Jµ(κb)Yµ(κr)] (C.8)

and

Kµ(ıκb)Kµ(−ıκb) =
(π

2

)2 [
J 2

µ(κb) + Y 2
µ(κb)

]
(C.9)

and

Kµ(ıκr ′)Kµ(−ıκb) − Kµ(−ıκr ′)Kµ(ıκb) = −π2ı

2
[Jµ(κr ′)Yµ(κb)−Jµ(κb)Yµ(κr ′)].

(C.10)

Using these three results, we directly see that formula (C.7) gets transformed into (9). This
can, of course, be considered as another proof of normalization conditions for Z-functions,
equations (B.1), (B.2).
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Appendix D. Integration over the coordinate r′ of the trajectory end

Most easily, integration in (11) can be addressed using equation (5). Indeed, whatever is the
value of r, we should consider the limit of large t in the sense that ta2  r2; that means, by the
time t the walker should have travelled from its starting point typically much further than to
the origin, O. Then, we note that although the integration over r ′ runs to infinity, the integral is
dominated by r ′ up to about a

√
t , because of the truncation by the exponential factor e−r ′2/a2t .

Accordingly, the argument ξ = 2rr ′/a2t of Iµ in equation (5) is small, and we can use the
expansion Iµ(ξ) 
 (ξ/2)µ/
(1 + µ). Upon integration over r ′, this yields

W(θ) ∝ e−r2/a2t

∫ ∞

0
cos(µθ)



(
1 + µ

2

)

(1 + µ)

(
r2

a2t

) µ

2

dµ. (D.1)

Now, we have to remember that r2/a2t � 1, which means that the latter integral is dominated
by small µ, more specifically by µ up to about 1/| ln(r2/a2t)|. Replacing both 
-functions
with unity leads then to

W(θ) ∝
1
2 ln

(
a2t
r2

)
(

1
2 ln

(
a2t
r2

))2
+ θ2



1
2 ln t(

1
2 ln t

)2
+ θ2

(D.2)

where the latter transformation is justified again because t is large. Thus, the resulting
distribution is indeed independent of r, and it is nothing else but the Spitzer law (1).

Appendix E. Proof that W is the probability

Here, we check that W satisfies the normalization condition as the probability:

∞∑
n=−∞

W

(
θ + 2πn,

3rr ′

a2t

)
= 1 (E.1)

which also means that identification of the points θ and θ + 2πn erases all the topological
information.

First, let us denote for brevity z = 2rr ′/a2t , and then we write

∞∑
n=−∞

W (θ + 2πn, z) = 2 e−z cos θ

∫ ∞

0

[ ∞∑
n=−∞

cos((θ + 2πn) µ)

]
Iµ(z) dµ

= e−z cos θ

∫ ∞

−∞

[ ∞∑
n=−∞

cos((θ + 2πn) µ)

]
I|µ|(z) dµ. (E.2)

Here, integration is expanded over all µ, both positive and negative, the price being the absolute
value of µ serving as an index of I|µ|. The expression in the square brackets can be easily
transformed using the identity

∞∑
k=−∞

e2πıkt =
∞∑

m=−∞
δ(t − m). (E.3)
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Thus, we write
∞∑

n=−∞
cos((θ + 2πn)µ) = 1

2

∞∑
n=−∞

[eıµ(θ+2πn) + eıµ(−θ−2πn)]

= 1

2

∞∑
n=−∞

[eıµ(θ+2πn) + eıµ(−θ+2πn)]

= 1

2

∞∑
n=−∞

e2πınµ[eıµθ + e−ıµθ ]

= cos(µθ)

∞∑
n=−∞

e2πınµ

= cos(µθ)

∞∑
m=−∞

δ(µ − m). (E.4)

We also use the two identities [35]:

Iν = e−ıνπ/2Jν(ız) (E.5)

(formula 8.406.3 in [35]) and

eız cos φ = J0(z) + 2
∞∑

k=1

ıkJk(z) cos(kφ) (E.6)

(formula 8.511.4 in [35]). This yields
∞∑

n=−∞
W(θ + 2πn, z) = e−z cos θ

∞∑
m=−∞

eımθ I|m|(z)

= e−z cos θ

∞∑
m=−∞

eımθ−ı|m|π/2J|m|(ız)

=


J0(ız) + 2

∞∑
m=1

cos(mθ − mπ)ımJm(ız)

︸ ︷︷ ︸
eı(ız) cos(θ−π)


 e−z cos θ = 1. (E.7)

This completes the proof.
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